Sample Data and Proofs

     The mass-energy of the gluino ğ = 6.388355 TeV.

But what supersymmetric particles gave birth to it, what must it decay to, and why? Or, what was, say, the universal mass density when the gluino emerged during the Big Bang? Only dimensionless Mumbers, or Membrane Numbers, can furnish invariant equations determining such particle or cosmic parameters. So, can other 'interpretations' of the standard model, superstrings, SUSY, M-theory or cosmology provide as firm or succinct theoretical answers to such fundamental questions? (For a far broader overview of a gluino's significance in regard to these issues click on The Theory, Significance and Precise Calculation of Gluino Mass.) 

      The mass-energy of the neutral weak boson

Zo   =  91.187633 GeV  =  9u1/8 +  ms  -  mb;

half of a proof given so one can’t deduce the mass of the strange and bottom quarks, or the Higgs vacuum minima u1. However, this value and equation suffices as one of our most powerful “Proofs in the Pudding” – given its present experimental average of 91.1876..0021 GeV is the highest energy that qualifies as a precisely measured scale. Beyond this tangible, verified "pudding” of experimental correlation, there are a couple of conventional theoretical proofs in this expression deriving the Z mass that are independent of the component masses per se or another equation – yet serve to further validate all unstated values in a standard context. (For a more extended discussion see The Z-Boson Mass And Its Formula As Multiple Proofs In One Yummy Bowl Of Pudding.)  

                              The Best Proof in Pudding or Theory

md - mu  =  4.5934527 MeV  =  p - p0

=  m(u+2d)o -  m(2u+d)+  =  m(d+d) - m(u+d)  =  m(u+d) - m(u+u)

       Again, one cannot infer the precise up and down quark masses from this differential, as it must correspond exactly to the measurable difference between the charged and neutral pions. But quarks can’t be physically measured directly. So these equations are proof positive that Kaluza-Klein Mumbers aren’t constrained by such obvious elusiveness - and positive proof both from, and that, standard theory and experiment, is helpless to ever give a precise prediction for either quark constituting the core of baryon matter – lacking any explanation for baryogenesis as well (see the gluino article for some vital information about this issue). You can now validate this basic tenet for yourself by deriving, then using, the down quark mass from the Home page's given value for the up (or vice versa with respect to the article The Pionic Proof of the Precise Down-Up Quark Mass Difference). However, the differential is obviously a derivative quantity: the prediction of the up and down (or pion) masses being predicated on more fundamental expressions. (Similarly, one can't fully fathom the origin of baryon matter without a thorough grasp of what composes a complete and unified numeric, geometric, theoretical and meta-logical tautology for physics and cosmology.)

   Likewise, the "standard model" is fine for extrapolating measurable parameters into a workable theoretical schematic. But it often lacks an explanation or equation that sufficiently predicts an observable. For example, the averaged experimental value for the mean life of the free neutron is 886.7 seconds. Without giving up the `punch line’ of the full equation, we’ll just demonstrate our basic methodology for exponential analysis of "membrane numbers" - as the beta decay time parameter  

                      2153.526686324  tpl  =  886.71204 s; where tpl is one unit of ‘Planck time.’

        These examples are the most powerful and confirmable evidence that 241 Mumbers supplies The Definitive Data for Fundamental Physics and Cosmology. Readers are encouraged to supplement these examples, and a few other themes, by following the given links to more extended summaries in web-articles which supply valuable additional information concerning the topics at hand. In particular, one might start with a history of 241 Mumbers in regard to a 'pure' dimensionless derivation of the fine-structure constant in 2000 in the essay Pure Derivation of the Exact Fine-Structure Constant and as a Ratio of Two Inexact Metric Constants, as up-dated with respect to some recent controversies. Which then naturally goes on to explore the crucial difference between the standard notion of a 'dimensionless constant' and a truly unified dimensionless system that allows one to consistently write pure numeric equations which are precisely predictive of an entire spectrum of fundamental parameters and particle masses (such as the last, as well as for the first, of the four basic examples here with respect to the neutron decay time and respective equations for the pure relation of the gluino to other masses in the first stage of the self-guided e-course of hand's-on education [as compared to what one John Gatto calls 'dumbed-down'2 schooling or book learning.)

Social Bookmarking Add to Onlywire

Home Page    Sample Data    Summary Info    Book Orders    Notable Rants    Winners Club